ブログ

飽差について

飽差は、空気中に含まれる水蒸気の程度を表す指標の一つで、今以上に水蒸気をどの程度含むことができるかを示すものです。ハウス空間内では、土壌面や葉面からの蒸散や、換気によるハウス内外の水蒸気の出入り、それに散水やミストの噴霧による水蒸気の発生など、様々な水蒸気の変動があり、時々刻々と変化をしています。さらにそれらは日射による温度変化の影響も受けることもあります。またハウス空間内の水蒸気は作物の蒸散にも影響を与え、さらに水蒸気の多寡により病害発生への影響もあるため、注意深く管理する必要があります。本記事では、ハウス空間内での飽差を含めた水蒸気の状態の把握や調整、栽培管理における観点などをご紹介します。

水蒸気を含む空気について

「湿り空気」という学術用語があり、水蒸気を含む空気のことです。空気は乾燥状態もあれば湿潤状態もあり、それらを物理的に示すために様々な表現方法があります。参考文献1)、参考文献2)には、それらの名称や定義、数式などが示されています。主なものを以下に記します。飽差も、それらのうちの一つになりますので、あわせてご覧ください。

飽和水蒸気圧(kPa):ある温度の空気が最大限水蒸気を含んだ時の水蒸気圧のこと。また飽和水蒸気圧は温度の関数として数式で表すことができます。温度が上昇すると飽和水蒸気圧も上昇し、最大限含むことができる水蒸気が上昇します。下図はそのグラフになります。

温度と飽和水蒸気圧の関係

水蒸気圧(kPa):空気中の実際の水蒸気圧のこと。空気は通常は最大限の水蒸気を含む飽和状態になることは少ないのですが、実際には乾燥状態の時もあれば湿潤状態の時もあります。これは空気中の水蒸気圧が様々な要因で変化するためです。水蒸気圧の測定は、乾湿球温度計の乾球温度(通常の温度計が示す温度)と湿球温度(濡れたガーゼなどで感知部を巻いた温度計が示す温度)の値より、数式で求めることができます。

 

相対湿度(%):ある気温における飽和水蒸気圧に対する、空気の水蒸気圧の比のこと。これらの二つが等しければ相対湿度は100%となり、比が1/2であれば相対湿度は50%になります。また前述の乾湿球温度計の値から換算して求めることもできます。

 

飽差(kPa):ある気温における、飽和水蒸気圧と実際の水蒸気圧の差のこと。飽差が小さければ、これ以上の水蒸気圧の上昇余地も小さいと言えます。また、飽差が大きければ水蒸気圧の上昇余地はまだ大きいものと言えます。

 

なお、参考文献3)では、飽差の単位をg/m3としており、その空気(1m3)が含むことができる水蒸気量をgで表しています。これは水蒸気密度とも呼ばれ、オランダを中心に使われています。圧(kPa)による表記に比べイメージがしやすく、オランダの施設園芸技術の導入とともに日本でも使われるようになりました。同じ湿り空気について両者の表記における値は異なりますが、変換式も存在します。

 

露点温度(℃):含まれる水蒸気が変わらぬ状態で空気が冷却され、飽和に達した時の温度のこと。この時に結露が起こり、水蒸気圧は飽和水蒸気圧と等しくなります。結露状態が起こると、様々な病害も発生しやすくなり、注意が必要と言えます。

 

下図に、水蒸気圧と相対湿度、飽和水蒸気圧、飽差の関係を示します。Bの状態(気温25℃、相対湿度60%)の空気の飽差は、Bの気温における飽和水蒸気圧と実際の水蒸気圧の差として求められます。

温度、相対湿度、水蒸気圧と飽差の関係

なお、このグラフをさらに発展させ、湿球温度も加えたものを、湿り空気線図と呼んでいます。湿り空気の様々な状態を読み取るために利用されるもので、参考文献1)や農業気象関係の教科書、空調関係の技術書などに記載があります。



作物生育と関連について

 

参考文献4)では、湿度制御と作物生育について、飽差を中心に述べています。飽差大きい状態(例として、冬から春にかけて換気で外気から取り入れられた空気がハウス内に入り、日射により昇温した状態など)では、作物からの蒸散量は増加しやすくなります。その蒸散量が根からの給水量を上回ることが継続すると、気孔開度が低下する現象が起こります(作物体内の水ポテンシャルの低下により気孔の孔辺細胞の膨圧も低下によって気孔が閉じる方向になる状態)。気孔開度の低下により、光合成に必要な空気中のCO2の吸収阻害が起こり、光合成速度も低下することになります。その際にCO2発生装置などによってCO2濃度を高めていても、その効果を充分に発揮できないことにもなります。

 

飽差はこのように光合成や作物の生育に影響を及ぼすことがあり、前述の例ではミスト発生装置などを利用して加湿を行い、ハウス内の空気の飽差を適正な範囲に維持して、作物の蒸散量も適度に行わせながら、CO2の気孔からの吸収も滞りなく行って光合成をスムーズに進めることや、蒸散によって根からの吸水と養分吸収も適度に行うことも考えられます。

 

適切な飽差の範囲は様々な文献や資料にも記されており、気温、相対湿度と飽差を関連させた表をご覧になられた方も多いと思います。参考文献4)にもオランダのトマト栽培の例として、日射の強い時間帯のハウス内空気について約3~7g/m3(気温20~28℃の範囲で相対湿度が75~80%前後)をあげています。しかしこの指標値についても、あくまでも目安としており、実際の気孔開度は、葉面積や根の状態、土壌の根域の水分状態にも左右されることもあげています。空気中の飽差や水蒸気圧と温度、日射量、CO2濃度について環境制御の観点で管理を行うことは必要ですが、同時に作物の葉からの蒸散と根からの吸水のバランスにも留意しなければならない、ということを本文献では示しています。

今後の展開

飽差を中心に、ハウス内空間の水蒸気の状態についての様々な見方などをご紹介しました。一方で、作物はハウス内空間に葉を繁らせ、またハウス内の土壌や培地に根を張り養水分を吸収しています。そこでは空気中の水蒸気と作物体内や土壌中の水の状態、そして作物の葉面積などの生育状態が、お互いに関係しあっています。光合成を促進し生育や収量を高めるためには、作物の生育状態も含め、総合的な栽培管理、潅水管理、そして飽差を含めた環境制御を行う必要があると言えるでしょう。

参考文献

  1. 渋谷俊夫、第4章 湿度制御 2.湿度の表記方法、施設園芸・植物工場ハンドブック(2015年)、農文協
  2. G.S. Campbell (著)・J.M. Norman (著)・ 久米 篤他 (監訳)、生物環境物理学の基礎 第2版(2010年)、森北出版
  3. P.G.H. Kamp (著)・G.J. Timmerman (著)・日本施設園芸協会 (監修)、コンピュータによる温室環境の制御 –オランダの環境制御法に学ぶ–(2004年)、誠文堂新光社
  4. 嶋津光鑑、第4章 湿度制御 7. 湿度環境の制御と病害虫・作物生育、施設園芸・植物工場ハンドブック(2015年)、農文協
タイトルとURLをコピーしました